
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/365472396

A novel pipeline for drug discovery

Method · November 2022

DOI: 10.13140/RG.2.2.27116.64649

CITATIONS

0
READS

335

7 authors, including:

Some of the authors of this publication are also working on these related projects:

Prepaire View project

Prepaire UAE research View project

Carl Freer

Prepaire Labs

47 PUBLICATIONS   2,658 CITATIONS   

SEE PROFILE

Vicent Ribas

Prepaire

1 PUBLICATION   0 CITATIONS   

SEE PROFILE

Stephen Carroll

Prepaire

3 PUBLICATIONS   0 CITATIONS   

SEE PROFILE

Michail Georgakis

www.sinodoschemistry.com

6 PUBLICATIONS   73 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Carl Freer on 17 November 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/365472396_A_novel_pipeline_for_drug_discovery?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/365472396_A_novel_pipeline_for_drug_discovery?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Prepaire?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Prepaire-UAE-research?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carl-Freer?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carl-Freer?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carl-Freer?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vicent-Ribas-5?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vicent-Ribas-5?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vicent-Ribas-5?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Carroll-11?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Carroll-11?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Carroll-11?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michail-Georgakis?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michail-Georgakis?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michail-Georgakis?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Carl-Freer?enrichId=rgreq-2fbf83b72d6f903230a1b3461cb9ab6d-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ3MjM5NjtBUzoxMTQzMTI4MTA5Nzc2NTgwMUAxNjY4NzAxMTcyMDk5&el=1_x_10&_esc=publicationCoverPdf


 
 

A novel pipeline for drug discovery 
By The Prepaire Team 

Introduction 
 
Foreword 
Driven by rapid advances in computer hardware and publicly available datasets over the past 
decade, deep learning has achieved tremendous success in the transformation of many 
computational disciplines. These novel technologies have had a considerable impact on 
computer-aided drug design as well, throughout all stages of the development pipeline.  
A flexible toolbox of neural architectures has been developed that is well-suited to represent the 
sequential, topological, or geometrical concepts of chemistry and biology; and that can either 
discriminate existing molecules or generate new ones from scratch.  
Prepaire is using a proprietary algorithm based on Convolutional Deep Neural Networks (CNN) 
and Generative Adversarial Networks (GANs) to build reactive chemical and biological fitting 
models enabling the identification ligands to protein targets, protein-protein interactions, 
generating molecular structures with specified properties combining both functionality and drug 
ability, as well as preparing synthetic data for specific drug discovery and personalized 
treatment. Convergence of CRISPR, IPS and Genome sequencing has established a new 
clinical utility for disease treatment and prevention. Prepaire is enabling precision medicine with 
intending to integrate whole-genome sequencing with deep phenotyping to data-visualize 
clinical IPS panels. The platform combines the in-silico prediction with high throughput wet-lab 
validation in an iterative cycle that empowers continuous improvement and increases efficiency, 
accuracy, and reliability which are critical to drug R&D. 
concurrence of state-of-the art Artificial Intelligence and chemical retrosynthesis has enabled 
companies like Prepaire to systematically integrate target identification, validation, lead 
discovery, optimization, drug synthesis, and preclinical testing into a single platform. AI 
accelerated drug discovery, allowing for a fast-track discovery and repurposing of the existing 
molecule, intelligent clinical design, and coupled with in-house manufacturing. Many of the 
bottlenecks in drug discovery and development could be alleviated if only we could predict 
earlier in the disease process which drugs are likely to work and for which patients.  
 
These platforms accelerate the drug development process by integrating disease models 
spanning in-vitro cellular systems, and in-silico machine learning models. These models, 
combined with robotic chemical systems capable of navigating a chemical space based on 
learned general associations between molecular structures and reactivity, it is possible to 
identify and predict a range of high yield and highly efficient chemical reactions and products 
that ultimately lead to the discovery of new molecules or new uses for already existing 
molecules that can eventually become new speciality treatments. We use artificial intelligence 
with DL in all accessible formats, including neural, GANs, NLP, supervised, semi-supervised 
and unsupervised learning to build procedures and pipelines that will become key enablers for 
medical compliance and clinical approval whilst ensuring IP protection throughout the whole 
drug discovery process. 
 
The successful outcome of these efforts will accelerate all steps of drug discovery and 
development, including target discovery, lead optimization, toxicity assessment, and trial design. 
 
Historic overview 
Modern drug discovery is a complex scientific area involving many different scientific disciplines 
ranging from chemistry, pharmacology, biology and medicine to applied mathematics, 
computational science, and artificial intelligence. From an historical perspective, drug discovery 
and prophylaxis have driven the evolution of medicine.  
 



 
Even though providing a comprehensive history of medicine is not the objective of this short 
white paper, we believe that the following examples are illustrative about the origins of 
experimental biological and medical research.  
 
During the second half of the 19th century, an obstetrician at the Vienna General Hospital, Ignaz 
Semmelweis, took a revolutionary approach to preventing death caused by puerperal fever. His 
department had an especially high mortality rate (18%) and he discovered that it was common 
practice for students to examine pregnant women directly after pathology lessons. By that time 
hygienic measures such as hand washing, or surgical gloves were not customary practice.  
 
Semmelweis deducted that child bed fever was caused by “decomposed animal matter that 
entered the blood system”1. As a matter of fact, he succeeded in lowering the mortality rate to 
2.5% by introducing hand washing and with a chlorinated lime solution before every 
gynaecological examination.  Later, the surgeon Joseph Lister managed to introduce the 
general procedure of instrument sterilization in medical practice. The methods initiated by Lister 
are not very different from those applied today.  
 
Arguably, the most important breakthrough regarding infections and infectious diseases is due 
to the works of Luis Pasteur. Pasteur discovered that tiny cell organisms caused disease and 
termed these organisms as bacteria. He also made the significant discovery that bacteria in 
fluids could be killed by heating. Pasteur also discovered that the administration of weakened 
chicken cholera bacteria immunized the animals against this illness and, as such, paved the 
way for the development of the first vaccines.  
 
The circle for treating the first bacterial infections is marked by the discovery of the synthetic 
prodrug salvarsan and neosalvarsan by Paul Ehrlich in 1910 to treat Treponema Pallidum, a 
pirochaete bacterium that causes the sexually transmitted disease syphilis. Inspired by his own 
discovery of dyes that specifically stain bacterial cells, Ehrlich started screening a panel of 
synthetic drugs and subsequently identified salvarsan2. 
 
This short historic overview shows that the first 100 years of modern drug discovery were 
largely target and mechanism agnostic and primarily driven by chemocentric approaches (i.e. 
approaches based on a specific compound class which served as starting point for further 
optimization). These chemotypes were either discovered through ethnobotanical knowledge or 
derived from natural ligands and substances. Of course, serendipity was a key success factor 
for the early beginnings of modern drug discovery.  
 

Background and methods 
 
In 2006 there were about 1500 unique drugs acting through more than 350 different 
mechanisms3. Today, the portal drugbank.com features more than 12000 compounds acting on 
more than 48600 pathways. This exponential increase in available treatments and the 
understanding of their underlying mechanisms of action stem from the significant advances in 
cell biology, combinatorial chemistry, and artificial intelligence.  
 
Target-based drug discovery has enabled a great expansion of chemotypes and 
pharmacophores available for the pharmacologist. New techniques like high-throughput 
screening (HTS), fragment-based screening (FBS), and crystallography in combination with 
molecular modelling, and combinatorial and parallel chemistry have created a considerable 

 
1 Semmelweis I., Etiology Concept and Profilaxis of Childbed Fever, University of Wisconsin Press, 1983. 
2 Eder J., Herring P.L., Ternds in Modern Drug Discovery, Springer, 2015. 
3 Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 
5(12):993–996 



 
diversity of chemical lead structures. This diversity can be used as a source for tool compounds 
to study unexplored biological space and find new drug targets or for phenotypic screening4. 
 
Compound collections used for high-throughput screening are typically based on chemically 
diverse molecules as well as on chemotypes from previous projects and can reach a size of 10–
20 million substances.  Compound collections can reach a size of 1–2 million substances. The 
compounds are screened in biological test systems, and hits, once validated by independent 
biochemical or biophysical methods, are further optimized to become drug candidates. The 
compounds are screened in biological test systems, and hits, once validated by independent 
biochemical or biophysical methods, are further optimized to drug candidates and clinical trials 
started with these compounds[2]. 
 
A specific variant of HTS is fragment-based screening.  Fragment-based HTS is based on the 
idea that smaller molecules (usually with molecular weights below 250 Da) are better suited to 
sample the chemical space because it is much less complex for small molecules than it is for 
bigger ones [2]. For example, this approach has been recently applied to find pyrimidone 
inhibitors targeting the Chikungunya virus nsP3 macrodomain [2]. 
 
Today, the X-ray crystal structure of a drug target's binding pocket can now be solved early in 
the Discovery process, making it possible to combine the different lead-finding approaches into 
an integrated strategy. In this way, lead finding today may no longer be seen as a one-off 
activity at the beginning of a discovery project but rather as part of compound optimization. With 
this structural information, it is often possible to combine the different lead-finding approaches 
into a broader, integrated lead-finding strategy5. 
 
With these approaches, data from various omics sources such as genetics, proteomics, and 
metabolomics is integrated to unravel the intricate working of systems biology using machine 
learning-based predictive algorithms on available drug libraries. Machine learning methods offer 
efficient techniques enabling the discovery of new treatment targets. These biomarkers have 
the potential to help in accurate disease prediction, patient stratification and delivery of precision 
medicine6. 
 

AI methods in drug design 
 
Despite the exponential growth in available healthcare data, only a small percentage of this 
newly created data is kept, as just 2% of the data produced and consumed in 2020 was saved 
and retained into 2021. In line with the strong growth of the data volume, the installed base of 
storage capacity is forecast to increase, growing to a compound annual growth rate of 19.2% 
between 2020 and 2025. Only in 2020, the installed base of storage capacity reached 64.2 ZB7. 
It is this exponential increase of available data combined with the growth in computation 
capacity that has driven the development of smarter electronic health records, and integration 
platforms as well as the Deep Learning Revolution, which has taken the healthcare and 
pharma industry by storm by developing more efficient and effective models for diagnosis, 
patient management and treatment development.  
Nevertheless, issues and pitfalls of drug development remain the same when it comes to drug 
development. It is a well-known fact that from the identification of a therapeutic compound, it 
takes roughly 12 years of research and development to obtain market approval, and that is only 
if the drug succeeds8. This long lead-time results in shortened exploitation times before the 
feared ‘drug patent cliff’. Moreover, only one in 1,000 (0.1%) of drugs that enter pre-clinical 

 
4 Eder J., and Herrling P.L., Trends in Modern Drug Discovery, Handbook of Experimental Pharmacology, 
Springer, 2015. 
5 Nielsch U., Fuhrmann U., Jaroch S., ’New Approaches to Drug Discovery’, Springer 2016. 
6 Reel P.S., Reel S., Pearson, et al., ‘Using machine learning approaches for multi-omics data analysis: A 
review’, Biotechnol. Adv. 2021. 
7 Statista.com 2022 
8 https://www.azolifesciences.com/article/Modern-Challenges-of-Drug-Discovery.aspx 



 
trials will succeed to be tested on humans, and only one in five (20%) of those that enter in-
human trials make it to approval [8]  . While these numbers have improved, there is still much 
room for further improvement to optimize the drug discovery process [8]. 
 
Graphical models 
Graphical models (GM) are a branch of machine learning, which uses graphs to represent a 
given domain problem. From a strictly mathematical point of view, GMs can be considered a 
generalization of different well-established machine-learning (ML) and Deep Learning (DL) 
models. For example, the Naïve Bayes’ algorithm, the Hidden Markov Model, the Restricted 
Boltzmann Machine (RBM) and Neural Networks belong to GM.  
Probabilistic graphical models combine both probability and graph theory. The probabilistic part 
performs its reasoning under measured uncertainty whilst the graph part models the 
dependency, mutual information or correlation between the different variables in our drug-
development problem. These models become even more relevant when the model variables 
can be modelled as exponential families because it is possible to rigorously demonstrate the 
statistical dependency between these variables9. 
For the case of drug-discovery, GM are used to assess the dependency between drugs and 
protein targets and find new molecules like those showing a strong statistical dependency with a 
given target. It is this these molecules that can be either synthesized de-novo or repurposed 
should they belong to an already existing library.  
 
Deep Learning 
Deep Learning (DL) has taken the drug-discovery space by storm. To name a few of the most 
recent state-of-the-art applications, DL has significantly accelerated the drug-discovery process 
and contributed to global efforts to stop the spread of infectious diseases. Besides enhancing 
the efficiency of screening, the efficiency of screening antimicrobial compounds against a broad 
spectrum of pathogens, deep learning also has the potential to reliably identify new targets, 
drug candidates and assessing antibiotic resistance of bacteria.  The efforts of Deepmind10 and 
Meta11 have recently unravelled the 3D structure of the known proteome.  
DL has been successfully used for the identification of drug candidates against the Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) including Favipiravir12, Atazanivir, 
Remdesivir, Kaletra, Enalaprilat, Venetoclax, Posaconazole, Daclatasvir, Ombitasvir, 
Toremifene, Niclosamide, Dexamethasone, Indomethacin, Pralatrexate, Azithromycin, 
Palmatine, and Sauchinone13. 
 
DL encompasses algorithms that abstract data by using multiple processing layers composed of 
complex structures or multiple non-linear transformations. Compared with the shallow machine 
learning methods, a deep learning algorithm is a process for automatic feature engineering. 
Deep Learning frameworks such as convolutional neural networks (CNNs), Graph Neural 
Networks (GNNs), and Transformers have been successfully applied in the fields of 
bioinformatics and biomedicine with excellent results.  
 
A CNN is a specialized type of artificial neural network (ANN) that uses the mathematical 
operator of convolution in place of general matrix multiplication in at least one of their layers. A 
CNN consists of an input layer, hidden layers and an output layer. In any feed-forward neural 
network, any middle layers are called hidden because their inputs and outputs are masked by 
the activation function and the final convolution. In a convolutional network, the hidden layers 
include layers that perform convolutions. Typically, this includes a layer that performs a dot 

 
9 Ribas V., Ruiz-Rodriguez J.C., Vellido A., Romero E., ‘Sepsis mortality prediction with the Quotient Basis 
Kernel’, Artificial Intelligence in Medicine, 2014. 
10 https://alphafold.ebi.ac.uk/ 
11 https://esmatlas.com/resources?action=fold 
12 www.prepaire.com 
13 Zhang Y., Ye T., Xi H., Juhas M., and Li J., ‘Deep Learning Drug Discovery: Tackling the Severe Acute 
Respiratory Syndrome Coronavirus 2’, Front. Microbiol., 2021. 
9 James Collins, MIT.  
 



 
product of the convolution kernel with the layer’s input matrix. As the convolution kernel slides 
along the input matrix for the layer, the convolution operation generates a feature map, which in 
turn contributes to the output of next layer. This is followed by other layers such as pooling 
layers, fully connected layers, and normalization layers.  
 
A GNN is a class of ANN designed for processing data that can be represented as a graph. The 
key design element of GNNs is the use of pairwise message passing, such that graph nodes 
iteratively update their representations by exchanging information with their neighbours.  
 
A Transformer is a DL model that adopts the mechanism of self-attention, differentially weighing 
the significance of each part of the input data. Transformers are designed to process sequential 
data such as drug SMILES with applications towards tasks of drug- 
target binding, or the assessment of side-effects for drugs. 

The Protein folding problem 

The binding between a protein and a molecule underlies how many drugs, including antibiotics, 
work. Most antibiotics, like penicillin, are simply small molecules that bind specifically to 
bacterial proteins. By binding to their protein targets, these drugs can interfere with the normal 
functions of proteins in many ways, including competing against physiological substrates and 
inducing protein conformational changes that render proteins inactive14. For antibiotics, we want 
these proteins to be needed for the cell to survive, so that the drugs targeting these proteins 
would lead to bacterial death [14]. 
This paradigm works similarly for anti-cancer and anti-viral drugs, and there are also cases 
where inhibiting the activity of some protein might be beneficial to a cell [14]. 
 
In general, being able to measure the binding between a protein and a molecule tells you about 
how a drug works and is a critical part of any drug development process. Many cases in which a 
drug succeeds or fails can be informed by knowing the protein target (or targets). A common 
reason for drugs failing is that they turn out to have multiple targets, and this promiscuity is often 
associated with drug side-effects [14]. 
 
Advances in AI algorithms and training have led to the development of software, such as 
AlphaFold15, that can accurately predict the 3D shapes of proteins given their amino acid 
combinations. 
Molecular docking has evolved and improved over the past 40 years, and nowadays open-
source (eg, AutoDock Vina16) and proprietary (eg, Schrödinger17) software are commonly used. 
Predicting drug binding is probably one of the most difficult tasks in biology: these are many-
atom interactions between complex molecules with many potential conformations, and the aim 
of docking is to pinpoint just one of them18. 
 
AlphaFold has now predicted over 200 million proteins from their amino acid strings. 
Researchers hoped that building such a large database would allow scientists to develop 
treatments targeting specific proteins associated with diseases such as cancer or dementia. 
Coming up with such medicines may require you to know the physical structure of the protein, 
which is where programs like AlphaFold can be used [14]. 
Breakthroughs such as AlphaFold are expanding the possibilities for in silico (computer 
simulation) drug discovery efforts, but these developments need to be coupled with additional 
advances in other aspects of modeling that are part of drug discovery efforts. One of 
AlphaFold's main contributions thus far has been to provide a comprehensive resource of 
predicted protein structures that we can now use for docking [14].  

 
14 https://www.theregister.com/2022/09/08/deepmind_alphafold_performance 
15 Jumper J., Evans R., Pritzel A., et al, Highly accurate protein structure prediction with AlphaFold, 
Nature 2021.  
16 https://vina.scripts.edu 
17 https://www.schrodinger.com 
18 https://www.salon.com/2022/09/24/no-ai-probably-wont-revolutionizedrug-development/ 



 
A new DL pipeline for drug discovery 
In the current scenario of multiple potential viral threats, repurposing drugs for treating existing 
and potential new diseases offers the clear advantage to work with de-risked compounds. 
Working with existing drugs for new indications reduces the timeline to market, provides a clear 
risk profile and in addition leverages the existing manufacturing and CMCs data facilitating an 
immediate go-to-market in case of positive results. Repurposing can cut go-to-market from 
multiple years to months and costs by a 10x factor or more.  
Concurrently the success experienced in the treatment of HIV and Cancer with combination 
therapies has driven pharma companies to replicate the approach also in other areas, by 
targeting multiple pathways in a synergistic or additive manner in to speed up recovery or 
improve recovery chances. The platform developed at Prepaire is perfectly suited for both tasks, 
empowering companies to create repurposed combination therapies in silico and obtain 
adequate IP protection before starting any in-vitro or in-vivo trial.  
 
 
 

 

 
 
 
 
In this short paper we present an example of the application of GM and DL to drug repurposing 
in the Prepaire platform. 
 

  
 
The first step in our pipeline consists in the development of a Graphical Model for the 
recommendation of drug candidates. In a first iteration of the Graphical Model, we assessed the 
dependencies between drugs and targets from DrugBank19. In the second iteration of 
development, this model is updated with networks and relationships from biosnap20. In this 
second iteration, particular attention has been given to the following networks and relationships: 

1. Chemical-gene interaction network 
2. Drug-target interaction networks 
3. Disease-drug interaction network 
4. Disease-function interaction network 
5. Disease-gene association networks 
6. Gene-function association network 

 
19 https://go.drugbank.com 
20 https://snap.stanford.edu/biodata/index.html 



 
The figure below shows the neighbourhood map for a single drug from the developed Graphical 
Model. 
 

 
Figure 1: Neighbourhood map for Favipiravir 

 
Our current Graphical Model design includes 4,000,000 edges and 175863 nodes out of which 
16655 are drugs, 29984 proteins, 63962 biological functions, 144 Tissues, and 10120 genes. 
Finally, the different disease names and classifications have been filtered with the disease 
ontology21 to decrease noise, redundant entries and, therefore, improve the relevance of the 
recommended drugs.  
 
The figure below shows the pipeline for the recommendation engine based on our graphical 
model. On a first stage, we create a graph embedding that can be efficiently searched and 
provide a metric for the similarity between entities (cosine distance between embedding vectors 
and the Levenstein distance for names). The recommendation engine provides the ranked 
shortlist of the most relevant drugs from our graphical model. 
 
 

 
21 Disease-ontology.org 



 

 
Figure 2: recommendation pipeline for drug candidates 

 
 
 
The short-list from the recommendation GM is then processed with the drug-target interaction 
(DTI) module. This DTI module has been developed with two three-layered deep CNNs (1024 x 
1024 x 512) and a learning rate of 0.0001. One CNN has been configured to predict pEC50 
from the bindingDB22 whilst the second has been configured to predict the log(Kd) from the 
same dataset. The inputs to this CNN have been encoded with an 8-layered Transformer 
(target) and another 3-layered CNN (drug). Data has been split into 80% for training, 10% for 
validation and 10% for testing. Both CNNs presented an MSE of 0.993, a Pearson Correlation 
of 78% and a concordance index of 80% on the complete SNAP dataset. 
 
The synergy module comprises a 3-layered CNN with (512 x 512 x 256) and a learning rate of 
0.001. This module has been trained with the drugcomb23 dataset where 70% of data has been 
used for training, 10% for validation and 20% for testing. The synergy module presented an 
AUPRC of 74% with a cross-entropy loss of 11.23.  
 
The drug repurposing pipeline outlined above has been applied to finding a combinatorial 
treatment for COVID-19 with Favipiravir.  
 
Favipiravir is a broad spectrum anti-viral developed by Fuji Film Toyama and approved in 2014 
against influenza. Due to its mechanism of action Favipiravir has been one of the first drugs to 
be introduced in the market for fighting against COVID-19. Favipiravir is approved in more than 
20 countries and has been used on millions of patients worldwide.  
Even with strong support of several meta-analysis4 and multiple clinical studies, the failure of 
some key studies in the United States5 has denied the drug the FDA approval. A post analysis 
of the failed trial has clearly pointed out some causes, including the potential of a wrong dosage 
due to the difference in BMI and metabolism between the original Japanese population and the 
American population involved in the trial.  
In any case, Favipiravir remains one of the drugs used worldwide, that, at the right dosage, 
seems to be extremely effective against COVID-19 and viral infections caused by RNA viruses. 
Favipiravir is an off-patent drug with numerous generics in the market, especially in the south-
east Asia, Turkey and India.  
 
For this repurposing experiment, we have taken as a reference the nucleoprotein structure for 
the SARS-COV-2 virus as shown in the figure below. The preselected thresholds for a valid 
combination with Favipiravir have been set to a pEC50 < 2 log(µ Mol), a Kd < 6 log(n Mol), a 
Binding Energy < 7 kcal / mol and a synergy score > 80%.  
 

 
22 https://www.bindingdb.org/rwd/bind/index.jsp 
23 https://drugcomb.org/ 



 

 
Figure 3: SARS-COV-2 nucleoprotein PDB 7ACT 

 
Our search engine and recommendation module yielded 500 feasible molecules. Out of these 
500 we short-listed the first 10 for which we present the main results in the table below. 
 

Drug Relevance pEC50 log(µ 
Mol)  

Kd 
log(nMol) 

Binding 
Energy 
(kcal/mol) 

Synergy 

Favipiravir 
(reference) 

74% 1.43 4.3 -4.95 n/a 

Remdesivir 87% 2.24 6.12 -5.93 57% 
Metenkefalin 82% 2.49 5.45 -7.16 58% 
Opaganib 81% 1.79 6.36 -7.70 63% 
Cutamesine 81% 1.69 5.63 -6.40 31% 
Methoserpidine 79% 3.06 7.15 -7.17 80% 
Methylthioinosine 79% 1.73 4.13 -5.34 44% 
Ethyleniadiamine 79% 1.40 2.91 -2.99 75% 
Moperone 78% 2.12 5.75 -7.66 64% 
Razuprotafib 78% 1.77 4.13 -7.79 77% 
Ivermectin 78% 1.82 5.86 -9.52 82% 

 
Ivermectin is an antiparasitic drug approved by the FDA for intestinal strongyloidiasis and 
onchocerciasis, has been made popular by the fringe culture as a potential cure for SARS-COV-
2. It is an off-patent drug provided by a wide range of manufacturers under different brand-
names.  
 
However, out of 32 clinical studies executed and completed with Ivermectin, none has resulted 
in a positive strong outcome for the drug. A particularly large trial involving more than 35001 
patients in Brazil has strongly concluded that treatment with Ivermectin alone was not effective 
in providing any improvement in clinical outcomes for the patients.  
At the same time, a meta-analysis2 on a subset of clinical trials has indicated the possibility of a 
certain potential effectiveness for Ivermectin against COVID-19, proposing the potential use of 
Ivermectin but, without a clear statistical significance, and more importantly without a clear 
explanation of its mechanism of action.  
Conversely, outside the clinical setting, the self-administration of the wrong dose of the drug has 
resulted in severe side effects, mainly related to dosage issues or interactions with other 
prescribed drugs, leading the FDA to provide a specific warning against using Ivermectin for the 
treatment of COVID-19.  
 
 



 
Conclusion 
In this short paper we have presented a background for AI-based drug repurposing and use 
case for repurposing two drugs against the SARS-COV-2 nucleoprotein using the Prepaire 
platform.  
 
Our experiments show that Ivermectin has a high binding energy with the nucleoprotein of 
SARS-COV2 due to its molecular size. Moreover, both pEC50 and Kd have respectively shown 
good potency and affinity against the virus.   
Regarding Favipiravir, our in-silico experiments have shown that it is binding to the SARS-COV-
2 nucleoprotein with high energy given the small size of the Favipiravir molecule. These results 
are confirmed with good pEC50 and Kd values.  
From the results for both molecules, it is possible to hypothesize about the mechanism of action 
against COVID-19 as indicated by the docking and binding energy for both molecules. Finally, 
there is a significant probability of synergistic effects between the two drugs (82%), which shall 
be validated in-vitro in future studies.  
The results from this study, supported in the issuance of a new patent by the USPTO for a 
combination therapy with Ivermectin and Favipiravir against COVID-19 and influenza. 
 
About Prepaire 
Prepaire is an AI-driven pharmatech company committed to discovering, repurposing, 
designing, and developing the best possible drugs in the fastest and most effective manner. 
Prepaire industrializes drug discovery using an autonomous operating system (OS) built across 
diverse technologies that continuously expand massive proprietary biological and chemical 
datasets. An internal pipeline is focused on leveraging a precision medicine platform in the 
antiviral space, while an extensive partnered pipeline broadens the approach to other 
therapeutic areas. Prepaire leverages sophisticated AI and ML algorithms to scale this new 
paradigm in medical science and healthcare, unconstrained by human bias. Prepaire unities 
technology, biology, and chemistry to advance the future of medicine. The Prepaire OS is 
the in-silico to an in-vitro fully integrated one-stop solution for discovery, repurposing, and 
personalized medicine. 
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